
Topics 3: Excess carrier behavior 
in semiconductor devices 

Virtually all semiconductor devices in active mode involve the 
generation, decay, or movement of carriers from one region to 
another 

Carrier population (n, p) that is different from the population 
at rest (n0, p0) is by definition  excess carriers (dn=n-n0, 
dp=p-p0) 

The excess carrier behavior determines how a device work 
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Introduction  

• Devices in active states involve non-equilibrium, and/or 
non-uniform, and/or transient (non-steady state), and/or 
non-ohmic carrier injection 

– Non-equilibrium carrier behavior 
•  Distributions n(x, t), p(x, t) 
•  Relaxation and recombination 
•  Migration: drift and diffusion 

– Some device examples 
• Photodetectors, solar cells, LEDs and lasers 
• Cathodoluminescence (Field-emission displays FEDs)  
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Non-equilibrium carrier behavior 
Some Key Concepts 

– Excess carriers: quasi-Fermi levels 

– Carrier injection: optical injection (optical pumping,
absorption), e-beam injection (electron pumping) 

– Carrier relaxation, recombination, lifetime: Ionization or 
avalanche. Radiative or non-radiative recombination, 
direct recombination or trap-mediated recombination.
 

 – Carrier transport: drift and diffusion 



Non-equilibrium carrier behaviors 



Density of state (linear 
scale) and Fermi 
distribution (log scale) 

 

Intrinsic 
carrier density 

 

Slightly n-type 
carrier density 

 

Slightly p-type 
carrier density 

 

Both n and p, not in 
thermal equilibrium 
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Non-equilibrium carrier behaviors 



Excitation and Relaxation 



Semiconductors in Nonequilibrium Conditions

Injection ⇒ A process of introducing excess carriers in
semiconductors.

Generation and recombination are two types:

(i) Direct band-to-band generation (G) and recombination (R) and 

(ii) the recombination through allowed energy states within the bandgap, 
referred to as traps or recombination centers.
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Direct band-to-band generation and recombination

The random generation-recombination of electrons-holes occur continuously 
due to the thermal excitation. 

In direct band-to-band generation-recombination, the electrons and holes are 
created-annihilated in pairs:

00 pn GG =
00 pn RR

Thermal equilibrium:

=

0000 pnpn RRGG ===

At thermal equilibrium, the 
concentrations of electrons and 
holes are independent of time; 
therefore, the generation and 
recombination rates are equal, so we 
have,
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Indirect recombination:

In real semiconductors, there are some crystal defects and these defects 
create discrete electronic energy states within the forbidden energy band. 

Recombination through the defect (trap) states is called indirect recombination

The carrier lifetime due to the recombination through the defect energy state 
is determined by the Shockley-Read-Hall theory of recombination.

Shockley-Read-Hall recombination:

Shockley-Read-Hall theory of recombination assumes that a single trap center 
exists at an energy Et within the bandgap.
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The trap center here 
is acceptor-like.

It is negatively 
charged when it 
contains an electron 
and is neutral when 
it does not contain 
an electron.

Four basic trap-assisted recombination processes
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Excess carrier generation and recombination
Symbol Definition 
n0, p0 
 
 

n, p  
 
 

δn = n- n0 
δp = p- p0 
 

Gn0, Gp0 
 
Rn0, Rp0 
 

pn gg ′′ ,  
 

pn RR ′′ ,  
 

τn0,τp0 

Thermal equilibrium electron and hole concentrations 
(independent of time) 
 

Total electron and hole concentrations (may be functions of 
time and/or position). 
 

Excess electron and hole concentrations (may be functions 
of time and/or position). 
 

Thermal electron and hole generation rates (cm-3s-1) 
 
Thermal equilibrium electron and hole recombination rates 
(cm-3s-1) 
 

Excess electron and hole generation rates (cm-3s-1) 
 

Excess electron and hole recombination rates (cm-3s-1) 
 

Excess minority carrier electron and hole lifetimes (s) 
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Nonequilibrium Excess Carriers

( ) ( ),0 tnntn δ+= ( ) ( )tpptp δ+= 0
2
innp ≠and 

The excess electrons and holes are created in pairs, 

pn gg ′=′ ( ) ( )tptn δδ =and

The excess electrons and holes recombine in pairs,

When excess electrons and holes are created, 

pn RR ′=′

( )

The excess carrier will decay over time and the decay rate depends on the 
concentration of excess carrier. 

( ) ( )[ ]tptnn
dt

tdn
i −∝ 2 ( ) ( ) ( )[ ]tptnn

dt
tdn

ir −= 2α

αr is the constant of proportionality for recombination.

or,
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Nonequilibrium Excess Carriers 

where τn0 is the excess minority carrier lifetime for electron and  τn0 = 1/(αrp0)

( ) ( ) ( ) ( )[ ]tnpntn
dt

tnd
r δδαδ

++−= 00

( ) ( ) ( )[ ]tptnn
dt

tdn
ir −= 2α

( ) ( ),0 tnntn δ+= ( ) ( )tpptp δ+= 0 ( ) ( )tptn δδ =and

For low-level injection condition: ( ) ( )tnnp δ>>+ 00

For p-type material, 00 np >>

( ) ( ) 0ptn
dt

tnd
rδαδ

−=Thus, 

( ) ( ) ( ) 00 /00 nr ttp enentn τα δδδ −− ==The solution for 
minority carrier is
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Excess carriers 

We consider here absence of surface or bulk recombinations  

Excess carrier concentration in EVB and ECB depends on: 
 
- Carrier life time 
- Absorption profile 
-   Temperature 



Excess carriers 
Intrinsic carrier concentration similar to Si 
  ni= pi = 1010 cm-3 
 
For n-type doping with majority carriers concentration 
  n = 1016 cm-3 
 
Mass action law: 
 
 
 
 
 
Minority carriers concentration p=104 cm-3 
 

Stationary excess carrier concentration 
 
P- photon flux 1017cm-2s-1 
         for hν=2eV (red light) 
 AM 1.5 at 84.4 mWcm-2 
τ- carrier lifetime 1µs 
Xα- absorption of photons 10-3 cm3 

       within a volume of 1 cm-3 x 10 µm depth 

n
np i

2
=

34
16

210

10
10

)10( −== cmp

α

τ
x
Pnp =∆=∆

314

3

1

3

617

10

][
10

1010

−

−

−

−

−

=∆

⋅
=∆

cmp
cm

ssp

Optical excitation perturbs this relation 
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ni- intrinsic carriers SC                 ni=1010cm-3 

n- electrons in doped SC in the dark     n=1016cm-3 

p- holes in doped SC in the dark               p=104cm-3 

 

∆n- electrons in doped SC created by illumination    ∆n=1014cm-3 

∆p- holes in doped SC created by illumination           ∆p=1014cm-3 

 

n*- electrons in doped SC under illumination 

  n*=n + ∆n=1016+1014             n*=1016+1014 

p*- holes in doped SC under illumination 

  p*=p + ∆p=104+1014                  p*=104+1014 

For majority carriers change by illumination is only 1% 

For minority carriers change is illumination is drastical – ten orders of magnitude 
For n-type semiconductor: 
- concentration of electrons coming from doping and thermal excitation is much higher than concentration 
of electrons coming from illumination  
- cocentration of holes coming from illumination is much higher than holes coming by thermal excitation 
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spatially dependent carrier concentration profiles in equilibrium (dark) and under illumination in 
comparison with the light absorption profile. 

Whereas the excess majority carrier profile changes little (the change has been magnified in the 
figure), the excess minority carrier concentration p* deviates strongly from the constant dark 
concentration (p). 

Light intensity decay 
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Quasi Fermi levels, definitions 

Carrier concentration for illumination:  
n*(x) = n + ∆n   p*(x) = p + ∆p  

*
ln)(*

n
N

kTExE CB
CBnFn −= *

ln)(*
p

N
kTExE VB

VBpFp +=

For stationary illumination and sufficiently long carrier life time, excess minority and majority 
carriers exist stationary at the respective band edges. Their excess carrier concentration relation 
defines a new quasi equilibrium and attempts have been made to describe this situation in 
analogy to the dark equilibrium terminology. Therefore one describes the Fermi level for an 
illuminated semiconductor in the framework of the equations derived for the non illuminated 
semiconductor. For n-type and p-type semiconductors, EF was given by  
 

 which can be written, based on the approximations derived as 
 



* *
* *

( ) ln[ ], ( ) ln[ ]CB VB
nF CB pF VB

N N
E x E kT E x E kT

n p
= - = , . 

For electron carriers 

*
*

( ) ln[ ]CB
nF CB

N
E x E kT

n
= - , 

and knowing 

ln[ ] ln[ ]CB CB
F CB CB F

N N
E E kT and E E kT

n n
= - = + , 

we can write 

*
*

*
*

*
*

*
*

( ) ln( ) ln( )

( ) [ln( ) ln( )]

( ) ln[ ]

( ) ln[ ]

CB CB
nF F

CB CB
nF F

CB
nF F

CB

nF F

N N
E x E kT kT

n n
N N

E x E kT kT
n n

N n
E x E kT

N n

n
E x E kT

n

= + -

= + -

= +

= +

 

Because *n n n= + D , we can write 

* ( ) ln[ ] ln[1 ]nF CB CB
n n n

E x E kT E kT
n n

+EE 
= + = ++   

Quasi Fermi level for electron is energetically located above the dark Fermi level. 



For hole carriers, 

*
*

( ) ln[ ]VB
pF VB

N
E x E kT

p
= + . 

Knowing 

ln[ ] ln[ ]VB VB
F VB VB F

N N
E E kT and E E kT

p p
= + = - , 

we can write 

*
*

*
*

*
*

*
*

( ) ln( ) ln( )

( ) [ln( ) ln( )]

( ) ln[ ]

( ) ln[ ]

VB VB
pF F

VB VB
nF F

VB
pF F

VB

pF F

N N
E x E kT kT

p p
N N

E x E kT kT
p p

N p
E x E kT

N p

p
E x E kT

p

= - +

= - +

= -

= -

 

Because *p p p= + D , we can write 

* ( ) ln[ ] ln[1 ]pF F F
p p p

E x E kT E kT
p p

+EE 
= - = - +  

Quasi Fermi level for hole is energetically located below the dark Fermi level. 



 



Continuity equations:

The continuity equation describes the behavior of excess carriers with time and 
in space in the presence of electric fields and density gradients.

Fp(x) Fp(x + Δx)

x x + ΔxArea, A

∼

Δx

The net increase in hole concentration per unit time,

( ) ( )
pp

pp
x

xxx

Rg
x

xxFxF
t
p

−+
Δ

Δ+−
=

∂
∂ ++

→Δ
Δ+→

0lim

F =F+ represents hole 
particle flux (# / cm2 –s)
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pp
p Rg
x

F
t
p

−+
∂

∂
−=

∂
∂ +

The hole flux, eJF pp /=+
The unit of hole flux is holes/cm2-s

pp
p Rg

x
J

et
p

−+
∂

∂
−=

∂
∂ 1

nn
n Rg

x
J

et
n

−+
∂
∂

=
∂
∂ 1

Similarly for electrons,

Continuity equations

These are the continuity equations for holes and electrons respectively
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Recall: In one dimension, the electron and hole current 
densities due to the drift and diffusion are given by:

x
neDnEeJ nnn ∂
∂

+= μ
x
peDpEeJ ppp ∂
∂

−= μ

( )
nnnn Rg

x
nE

x
nD

t
n

−+
∂

∂
+

∂
∂

=
∂
∂ μ2

2( )
pppp Rg

x
pE

x
pD

t
p

−+
∂

∂
−

∂
∂

=
∂
∂ μ2

2

nnnn Rg
x
En

x
nE

x
nD

t
n

−+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂ μ2

2

pppp Rg
x
Ep

x
pE

x
pD

t
p

−+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

−
∂
∂

=
∂
∂ μ2

2

Or, 

Substitute these in the continuity equations:
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The thermal-equilibrium concentrations, n0 and p0, are not functions of time. For 
the special case of homogeneous semiconductor, n0 and p0 are also 
independent of the space coordinates. So the continuity may then be written in 
the form of:

nnnn Rg
x
En

x
nE

x
nD

t
n

−+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

+
∂
∂

=
∂
∂ δμδδ

2

2

nppp Rg
x
Ep

x
pE

x
pD

t
p

−+⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+
∂
∂

−
∂
∂

=
∂
∂ δμδδ

2

2

pppandnnn δδ +=+= 00

Time –dependent 
diffusion equations
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Semiconductor Equations 
The operation of most semiconductor devices can be described by the so-called 
semiconductor device equations, including 
 

, 
from Poisson’s equation, where N is the net charge due to dopants and other trapped charges; 
and the hole and electron continuity equations 

 
where G is the optical generation rate of electron–hole pairs. Thermal generation is included 
in Rp and Rn. The hole and electron current densities are given by 

. 
The two terms, φp and φn, are the band parameters that account for degeneracy and a spatially 
varying band gap and electron affinity. 
A complete description of the operation of optoelectronic devices can be obtained by solving 
the complete set of coupled differential equations Eq. (1), Eq. (2), and Eq. (3). 



A case study of pin solar cell 
(excerpted from the paper of E.A. Schiff, Low-mobility solar cells: a device physics primer 

with application to amorphous silicon, Solar Energy Materials & Solar Cells 78 (2003) 567–595) 

 
 

Analytical Model 

The fundamental structure of the solar cells consists of three layers: a p-type electrode layer that 

collects holes, an intrinsic layer in which photocarriers are generated, and an n-type electrode layer to 

collect electrons. 

The intrinsic layer is assumed to be an insulator under dark conditions. Excess electrons (holes) are 

donated from the n- (p-) type layer to the p- (n-) type layer, leaving these layers positively (negatively) 

charged, and creating a ‘‘built-in’’ electric field. 



The photons are absorbed in the intrinsic layer, where each absorbed photon will generate one electron and 

one hole. The photocarriers are swept away by the built-in electric field to the n-type and p-type layers, 

respectively—thus generating solar electricity. 

 

The electronic structure of the material is revealed with some critical parameters: the energy bandgap , 

the effective densities of states and  of the conduction and the valence bandedges, and 

effective mass and mobility of carriers in the conduction and valence bands. 

In the i-layer, photons with energies (eV) greater than the bandgap can excite an 

electron out of the filled electronic levels in the valence band and into the conduction band; leaves one 



hole behind in the valence band. The generation rate will be denoted by . 

The excess carriers rapidly shed energy and coalesce onto the levels close to the bandedges. 

The average speed  of these carriers in an electric field E is characterized by the electron 

(hole) mobility . 

The recombination rate is proportional to the density of electrons n, the density of 

holes p, and the recombination coefficient . 
 

 



A positive voltage V corresponds to an external electric potential that is larger at the p-layer electrode than 

at the n-layer electrode. The value of V at which J=0 is called the ‘‘open-circuit’’ voltage OCV .  

At short-circuit (V=0), the magnitude of the current density is denoted the ‘‘short-circuit current density’’ 

JSC. 

No power is delivered to the external circuit under either short-circuit or open-circuit conditions. The 

power density P (V)= J(V)∙V is delivered to the external circuit is maximized at Vm (the maximum power 

point). 

Under short-circuit conditions with a constant generation rate throughout the absorber layer, every 

photocarrier that is generated by photon absorption will be swept across the thin absorber layer by the 

internal electric field and collected. 



 

 

Therefore, . The short-circuit current density is proportional to thickness for d<1250 nm. 

The open-circuit voltage is independent of thickness, and in terms of the fundamental parameters of the 

intrinsic layer material 



ln[ ]OC g
R c v

G
eV E kT

b N N
= + . 

The fill-factor FF, which is defined from the power relation  P=(FF)∙JSC∙VOC, saturates at about the same 

thickness as the short-circuit current density. 

For intrinsic layers exceeding some collection width Cd (determined by the buildup of a space-charge of 

drifting carriers), the output power density P saturates at some maximum value. The power density 

saturates for smaller thicknesses than does the short-circuit current density or the fill-factor. This is due to 

that the electric potential across the cell is larger under short-circuit conditions than it is at the maximum 

power point. Photocarriers generated deeper in the cell than Cd may thus be collected under short-circuit 

conditions, but this additional collection does not contribute to power generation. 



 

If the mobile electron density (i.e., the density of electrons occupying levels above the conduction 

bandedge ) is denoted by n, then the electron quasi-Fermi level is defined by 

. 

For holes, a similar expression can be defined 



ln[ ]Fp v
v

p
E E kT

N
= - . 

Thus, photocarrier generation in a material creates two electronic reservoirs with differing chemical 

potentials. Electrons in the conduction band are one such reservoir; holes in the valence band are the 

second. 

Electron and hole currents may be expressed in terms of quasi-Fermi energy gradient 

( )
( )Fn

n n n
E x

J n E n
x

nn
¶

= = -
¶ . 

Under open-circuit conditions, the intrinsic layer is in isolation (i.e., without gradients or electric fields 

that would transport electrons and holes in space). The n-layer serves as an ideal electrode, permitting us 

to measure FnE ; and similarly, the p-layer serves as an ideal electrode to measure FpE . A voltmeter 

connected to the n- and p-layers then measures ( ) /OC Fn FpV E E e= - . 

Assuming the semiconductor layer in a device is electrically neutral (n=p). Under continuous illumination, 



in steady state the rate of generation G is equal to the rate of recombination ( RG R b np= = ), leading to 

the carrier densities Rn p G b= = . The quasi-Fermi energies of free carriers in the layer can be 

deduced to be 

2
ln[ ]

2Fn c
R c

kT G
E E

b N
= +  

2
ln[ ]

2Fp v
R v

kT G
E E

b N
= - . 

Thus the open-circuit voltage can be expressed as 

ln[ ]OC g
R c v

G
eV E kT

b N N
= + . 

Under open-circuit conditions, the profile of the electric field (dashed curve) exhibits a quite large electric 

field near the p/i interface. Thus, hole photocarriers in this high field region drift rapidly towards the 

p-layer. However, this drift simply cancels the diffusion of holes out of the p-layer, resulting in a zero net 

current (drift-diffusion). 



 
 
When the cell is biased at its maximum power point, the electric field penetrates more deeply into the cell, 

and net current is flowing. The field declines linearly towards zero at a depth , identified as the 

collection width. 

The generation rate profile G(x) is essentially a constant. For  deep in the device, all photocarriers 

that are generated recombine without being collected (i.e., G=R). However, every hole generated in can 



reach the p-layer and is collected. Thus, the current that flows in the external bias circuit may be estimated 

by Cj eGd= . 

The electric field, which declines linearly to zero with depth, produces a uniform charge density r  

within collection zone. From semiconductor equations in the collection region ( 0 Cx d< < ) 

( ) (continuity equation)

( ) ( ) ( ) (drift relation)

( ) ( )
(Poisson's equation)

h

h h

J
e G R

x
J x x E x

E x x
x

sn
s
f

¶
= -

¶
=

¶
=

¶

. 

At x=0, R=0 and (0) CE dr e= - . From the continuity equation, (0)p CJ eGd= - . From the drift relation, 

 2(0) (0)p p p CJ E drm r m e= = - . 

Thus, pe Gr e m= . We note that 
1 4 1 42 2(4 ) [4 ]c pd V eG Vm ee  r= D × = D ×  is determined by r and the 

electric potential 2( ) (0) 2C CV V d V d r eD = - =  across the collection width. 

The output power density is given by ( ) ( )P V J V V= × , in which ( )J V  can be approximated with the hole 



current (0)p CJ eGd=  at x=0. OCV V VD = -  is the difference between the open-circuit voltage and the 

applied potential V. Thus, ( ) OCP V V V Vµ - × , which reaches a maximum 3/2 3 3 1/4(2 3) ( )m OC pP V e Gm e=  at 

2 3m OCV V= . And 1/2 1/4(2 3) ( / )C OC pd V eGm e= , implying that the maximum power density is a function 

of the hole mobility. 

As the voltage across the cell is reduced from OCV , photocarriers are collected in the region where the 

recombination rate R of electrons and holes falls below the generation rate G. The current density can be 

approximated with 

( )
( ) (1 )

RV
j V eGd

G
= - , 

where d is the thickness of the intrinsic layer. The applied potential V(R) associated with a given 

recombination rate R can be determined from ln[ ]OC g
R c v

G
eV E kT

b N N
= +  but replacing the generation 

rate G with the recombination rate, which yields 



( ) ln[ ]g
R c v

R
eV R E kT

b N N
» +  

for an arbitrary voltage V. Thus, we can deduce [ ( )] ln[ ]OC
G

e V V R kT
R

- = , and 

( ) [1 exp( )]J V eGd e V kT= - - D . The power density at an arbitrary voltage V becomes ( ) ( )P V V J V= × . A 

maximum power density can be achieved with Vm, which shall fulfill the condition of 

( ) ( ) ln[1 ( ) ]m OC me kT V e kT V e kT V= - + .  

For 9 3 110Rb cm s- -= , we estimated 1.09OCV V= . Solving the expression by iteration, we 

obtain 0.997mV V= , which is fairly close to the value Vm=0.97 V for a 250-nm thick i-layer cell. 



Effects of Valence Bandtail Width 

Non-crystalline semiconductors do tend to have fairly low band mobilities. The best documented case 

is that of hydrogenated amorphous silicon, for which the electron band mobility is about 2 cm2/Vs, 

compared to the value in crystal silicon (1800 cm2/V s at 300 K). In practice, the effective mobility is 

further reduced by trapping of carriers into localized states between the bandedges. 

An satisfactory account for drift-mobility measurements in amorphous a-Si:H could be given using an 

exponential distribution of these trap states. For the valence bandtail, the trap distribution vs. level energy 

is written 

0 3( ) ( / )exp[ ( ) ]V V V Vg E g cm eV E E E= - - E . 

VEE is the width of the valence bandtail, which was found to be around 50 meV in a-Si:H. The conduction 

bandtail width is smaller around 22 meV, and near room-temperature (kT=25 meV) conduction bandtail 

trapping can be neglected. 
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